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ABSTRACT

The solvability of a linear program is characterized in terms of the
existence of a fixed projection on the feasible region, of all sufficiently
large positive multiples of the gradient of the objective function. This
projection turns out to be the normal solution obtained by projecting the
origin on the optimal solution set. By seeking the solution with least
2-norm which minimizes the 1-norm infeasibility measure of a system of
linear inequalities or of the optimality conditions of a linear program, one
is led to a simple minimization problem of a convex quadratic function on
the nonnegative orthant which is guaranteed to be solvable by a successive
overrelaxation (SOR) method. This normal solution is an exact solution if
the original system is solvable, otherwise it is an error-minimizing solu-
tion. New computational results are given to indicate that SOR methods can
solve very large sparse linear programs that cannot be handled by an ordinary

linear programming package. e
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' , SIGNIFICANCE AND EXPLANATION

Linear programming problems may not have exact solutions due to
inaccuracies in the data. By considering approximate solutions which
are closest to the origin we have come up with a simple but powerful
iterative method that can solve exactly (if the linear program is
solvable) or approximately (if the linear program is unsolvable) very
large sparse linear programs that cannot be solved by ordinary linear

programming techniques such as the simplex method.
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NORMAL SOLUTIONS OF LINEAR PROGRAMS
0. L. Mangasarian

1. Introduction

A nommal solution to a linear program is an exact solution with some
least norm property if the linear program jis solvable, otherwise it is an
approximate solution with some least norm property also. By an approximate
solution we mean a point which minimizes a measure of satisfaction of the
optimality conditions of the linear program. By considering normal solu-
tions we are led to:

(1) Iterative successive overrelaxation (SOR) methods capable of

solving very large linear programs.
(i1) Approximate solutions to poorly posed or unsolvable linear
programs.
(111) A stable solution or approximate solution, to a linear program,
endowed with a least norm property.

For solvable linear programs our normal solution is essentially equiv-
alent to that of Tikhonov and Arsenin [16] which they obtain by solving an
asymptotic problem [16, Theorem 1, p. 226], whereas our solution is obtained by
solving a simpler exact problem, problem (2.2) for any €e(0,8] for some €>0
(Theorem 2.1). Tikhonov and Arsenin's weaker asymptotic result comes about
because they square the objective function of the linear program in their
regularization problem [16, p. 226] and thereby lose an essential exact

feature of our problem (2.2). Tikhonov and Arsenin also do not consider the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work sponsored by National Science Foundation
Grant MCS-8200632.




important case of possibly unsolvable 1inear programs (Section 4), nor
do they give explicit computational methods for solving their asymptotic
problem.

We outline now our principal results and their relation to other work.
In Section 2 we consider normal solutions of solvable 1inear programs. In
Theorem 2.1 we give a complete characterization of the solvability of a
linear program in terms of a 2-norm projection on the feasible region of a
sufficiently large but finite positive multiple of the gradient of the
objective function. This projection turns out to be fixed and equal to the

unique 2-norm projection of the origin on the optimal solution set. Part

of Theorem 2.1, a(i), follows readily from [13, Theorem 1], while its
converse, part a(ii), which is essential for a comprehensive justification
of the linear programming SOR Algorithm 2.3, has not been available before.
Theorem 2.2, which follows from Theorem 2.1 and quadratic programming
duality, characterizes the solvability of a linear program in terms of the
solvability of a convex quadratic function minimization on the nonnegative
orthant (2.7) without any a priori assumptions regarding the solvability
of the linear program (2.1) as was the case in [11,12]. In addition,
Theorem 2.2 gives the complete basis for the linear programming SOR
Algorithm 2.3 and its convergence {Theorem 2.4) thereby sharpening earlier
convergence resuits [11,12].

In Section 3 we turn our attention to a system of possibly inconsis-
tent linear inequalities (3.1) and reduce it to the problem of finding
the unique least 2-norm solution of the problem of minimizing the 1-norm
infeasibility measure of (3.1). The principal advantage of this approach
is that it leads to the SOR Algorfthm 3.1 which, unlike most other
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iterative procedures [1,15,3] which require an a priori consistency as-

sumption, will converge no matter whether the original system (3.1) is

consistent or not. In either case Algorithm 3.1 will give an exact or

! approximate solution with least 2-norm (Theorem 3.2). Among the poten-
| tial useful applications of this approach i{s in the image reconstruction
techniques of tomography [7,8] which require the solution of enormous

sparse systems of linear equations with nonnegative variables. Most

current iterative techniques for the tomography problem [7,8,2] need an

a priori assumption regarding the consistency of the original system.

In contrast our Algorithm 3.1 needs no such assumption.

In Section 4 we consider possibly unsolvable linear programs and

reduce their solution to finding the least 2-norm primal-dual solution
; - which minimizes the 1-norm of the optimality conditions of the given
linear program. This approach leads to an SOR algorithm that is guaran-

teed to work whether the original linear program is solvablie or not. In

either case it will give an exact or approximate solution with least
2-norm,

Finally in Section 5 we give some numerical comparisons for one
version of our linear programming SOR algorithm with the XMP version [14]
of the revised simplex method for medium and large size sparse linear
programs. These comparisons indicate that SOR methods can solve very

large sparse linear programs that cannot be solved by an ordinary linear

programming package.

We briefly describe the notation used. AN matricés and vectors are

real. Ffor the mxn matrix A we denote row i by Ai’ column J by A.j

and the element in row {1 and column j by A1J. For x in the real
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n-dimensional Euclidean space R", Xy denotes element i for i=1,....,n,
and x, denotes the vector with components (x+)1 = max {xi,O}. i=1,....,n.
Vectors are either row or column vectors depending on the context. For x

n
and y in R", xy denotes the scalar product 1Z1 X4¥4» while ||x||t

n -
for 1 <t <= denotes the t-norm ( Ixilt)t » |Ixll denotes an arbi-
i=1

trary but fixed nom on R" and ||A]| denotes the subordinate matrix norm
"n\Tlx llAx|] for an mxn matrix. The vector e will denote a vector of
x||=1

ones in any real Euclidean space. R2 will denote the nonnegative orthant

{x|xeR", x>0}. For a point ¢ in R", a closed set X in R" and a

number te [1,2] the t-norm projection pylc.X) of the point ¢ on X

is defined by

lle-p,(c.X) ||, = min |c-x]|
t t xeX t

For a function f: R" + R which is twice differentiable on R", vf(x)
denotes the n-dimensional gradient vector at x with components

v f(x), i=1,....,n, and vzf(x) denotes the nxn Hessian matrix at
i

x with elements (sz(x))”. i, J=1,....,n0.




2. Normal solutions of solvable linear programs

We consider here the l1inear program

(2.1) maximize cx  subject to xeX:= {x|xeR", Ax<b, x>0}
! where b and ¢ are given vectors in R"™ and R" respectively and A

is a given mxn real matrix. Let X denote the (possibly empty) optimal
solution set of (2.1). We shall assume throughout this section that this
1inear program is feasible, that is X is nonempty. We begin with the

following fundamental and geometrically plausible result.

2.1 Theorem Let the linear program (2.1) be feasible. Then

a. (1) ma; cx has a solution = J€ > 0: pz(%.x)-pz(o,i) for all e e (0,€]
Xe

(if) max cx has a solution) * 32 > 0, X: p, (S, X) = X for all e (0,8]
xeX 2’

and % = p,(0,X)

where pz(x,x) denotes the 2-norm projection of x on X.

b. SUp CX = o = ||p2(§,x)|| +o as ¢+ 0+
xeX
Proof

a(i): By noting that pz(%.x) is a solution of either of the equivalent problems

2 2
(2.2) min [|x-<{| e min -cx + §x]|
xeX €72 xeX H IZ
. the implication of a(i) follows from Theorem 1 of [13].

a(ii): Since x = pz(-:-,x) for all €€ (0,e], then there exists
(u(e), v(€)) e ™" such that (%, u(e), v(e)) satisfies the Karush-Kuhn-
Tucker conditions [9] for (2.2), that is
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(2.3) €X - ¢+ Alule) - v(e) = 0, v(e)% = 0, AX < b, u(e)(AR-b) = 0,

(x, u(e), v(e)) 2 0, ¥e €(0,€]

By the fundamental theorem for the existence of basic feasible solutions
for linear equations with nonnegative variables [6, Theorem 2.11], and the
complementarity conditions u(e){AXx-b) = 0, v(e)Xx = 0, it follows that
there exist (u(e), v(e)) satisfying (2.3) such that all elements of
(u(e), v(e)) not corresponding to some subset of k linearly independent
columns of [AT -1] are zero. Since the rank of [AT -1] is n, it
follows that we can take k = n and denote by B(e) as this "basis"
matrix of n 1linearly independent columns of [AT ~1]. Hence it follows

for such a "basic" solution (u(e), v(e)) satisfying (2.3) that
lule) v(e)l < Ulell +ENZIDIBETT  vee (0,2

Since [AT -1] contains a finite number of basis matrices it follows that
for some basis matrix B, ”B(e)"l] < IIB'lll for all ee¢ (0,e] and

consequently
(2.4) Nute) vie)ll < (lell +2NRIDNB M Yee (0,23

Now let {e'} be a sequence of positive numbers in (0,€] converging to
0. Then there exists a sequence {(u(ei), v(ei))} satisfying (2.3) and
(2.4) and hence it is bounded and has an accumulation point (u,v)
satisfying

(2.5) -c+Ald-7=0,Vk=0, A < b; G(AZ-b) = 0, (X,d,7) > 0 ’

These are the Karush-Kuhn-Tucker conditions for the linear program (2.1)

and hence x solves (2.1). Since (x, u(e), v(e)) also satisfies (2.3)




b

which are also the Karush-Kuhn-Tucker condftions fo;-

min -}llxllg subject to Ax < b, x 20, cx 2 cXk

with optimal x = X and optimal multiplier vector of (—-(—)- -(—)- l) it
follows that x = pz(o X).

(b) (e=): If not then the linear program (2.1) has a solution and by part
a(i) of this theorem 3c > O: pz(%,x) = pz(o.i) for all ee (0,€]. This
however contradicts the hypothesis that |lp2(§.)()|| +o as €+ 0+,

(=»): If not then, for a sequence of positive numbers {ei} converging to
zero, the sequence {||p,( 1.)()II} is bounded. By defining x(e'):= pz(-S-.x)
we get that x(e ) and some (u(e ), v(r-: )) e ™ satisfy the Karush-
Kuhn-Tucker conditions for I'::l; ”x':i'"_,_ for =1,2,....., that is

(2.6) 'x(el)-c+ATule') - v(e') = 0, v(e!) x(e') =0, ax(e') <b, u(el ) (Ax(eh)-b) = 0,

(x(e'), uteh), v 20

By the same argument as in the proof of part a(1f) of this theorem we can show
that the sequence {(u(ei). v(ei))} satisfying (2.6) can be taken as bounded
since {x(ei)} {s also bounded. Thus the sequence {(x(ei). u(ei), v(ei))}

is bounded and has an accumulation point (X,u,v) satisfying (2.5). Hence X

solves (2.1) which contradicts the hypothesis that sug CX = o, 0
Xe

By noting that the quadratic programming dual [9] to (2.2) is

(2.7) minimize vrIIAu v- c|| + ebu

a.v)tk""
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where the primal and dual variables x and (u,v) are related by
(2.8) x=LlaTusvec),
the following theorem is a direct consequence of Theorem 2.1.

2.2 Theorem The linear program (2.1) is solvable if and only if there
exists an € > 0 such that for each ece¢ (0,6] the quadratic program

(2.7) has a solution (u(e), v(c)) and such that the vector x defined by

(2.9) fi= L(-ATu(e) +v(e) + ¢) ee(0,E)

o |=

is independent of €, 1in which case X = pz(o.i).

If we define the objective function of (2.7) by
T 2
(2.10) f(z):= |ATu- v-cliz + ebu, 2:= (:)

then we can prescribe an SOR procedure for solving (2.7) which in view of
Theorem 2.2 solves the linear program (2.1). The SOR procedure is essen-

tially a gradient projection algorithm of the following type

2.11) 2. (z;-u(vzf(z‘))

J f(z;#l i+l i i )

"--o-’z‘j_lgzj,tcl'!'zm+n +’

-
3172
0<w<2, J=1,c.0c.,mtn.

More specifically [12] the following SOR algorithm for solving the linear
program (2.1) follows directly from (2.11) and (2.10).

2.3 LPSOR(A, b,c) Algorithm Choose (u%, v0) e R™", we (0,2) and
141

. v1*1) as follows:

€ > 0. Having (u'. vi) determine (u

2]
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31 m
u}+] - (u}- W Z(Aj( Z (AT). ul"‘ + Z ‘AT). u}-vi - C)+€bj))+ if Aj* 0
a2 gy Tt ety T
"2 ¢4 AR
i+ . =1,..... ,
UJ 0 if AJ 0 J=1, m
v"‘"] = (Vi -m(_ATu'H’] +Vi +C))+

Note that Algorithm 2.3 is sparsity-preserving for it works with the
rows of A only and the product AAT need not be computed.

The foilowing convergence theorem which follows from Theorem 2.2 above
and [12, Theorem 2] sharpens previous LPSOR convergence theorems

(11, Theorem 3.2] and [12, Theorem 4].

2.4 LPSOR(A, b, c) Convergence Theorem

(a) The linear program (2.1) has a solution if and only if there exists a
real positive number € such that for each ee¢ (0,€], each accumula-
tion point (u(e), v(c)) of the sequence {(ui.vi)} generated by the
LPSOR(A, b, c¢) Algorithm 2.3 solves (2.7) and the corresponding X
determined by (2.9) is independent of €, 1in which case x = pz(o,i).

(b) If the linear program (2.1) has a solution and its constraints satisfy
the Slater constraint qualification, that is Ax < b for some x >0,
then the sequence {(u',v')} of the LPSOR(A, b, c) Mgorithm 2.3 is

bounded and has an accumulation for each ce¢ (0,€] for some & > 0.

Computational results for the Algorithm 2.3 are given in Section 5.
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3. Normal solutions of possibly inconsistent linear inequalities

We consider in this section the possibly inconsistent system of

linear inequalities
(3.1) Ax < b, x20

where A is a given mxn matrix and b 1is a given vector in ™. If
we try to “solve" the above system by an SOR [10] procedure applied to the
obvious 2-norm minimization problem

2 2
(3.2) in ||(Ax-b = mi Axty-b)|, =: mi o(x,
min l1(Ax-b), Il (x".'y')'g_o l| Axty-bl|, (xu:yr;zo X.y)

one needs the condition

AT(Ax+y - b)
(3.3) Vo (x,y) = > 0, for some (x,y)e R
Ax + y - b

to guarantee boundedness of the SOR iterates [10, Theorem 2.2], which by
the Gordan Theorem [9, Theorem 2.4.5] is equivalent to the condition that

(3.4) Ax < 0, 0 # x > 0, has no solution

Unfortunately this condition is not satisfied in general, as is the case
when the feasible region is nonempty and unbounded. To avoid this
difficulty we use the SOR procedure of Section 2 to find the 2-norm

projection of the origin in R"+m on the nonempty solution set of the

1inear program

(3.5) min {ey|Ax-y< b}
(xi,y)€R+




_ ity illbop b - e o B i, o

PR .

«11=

which i{s the equivalent of the broblen of minimizing the 1-norm feasibility
of (3.1)

(3-6) .1"" " (Ax' b)+||<|

XeR+

The key feature of this approach is that the SOR procedure will work no

matter whether the system (3.1) is consistent or not. In either case the

SOR procedure will obtafin the unique solution (X,y) of (3.5) with least
2-norm. In terms of the original inequalities (3.1), X is the unique
solution of (3.6) which minimizes | x, (Ax-b)+||2. Needless to say, if
(3.1) is consistent then X 1is the unique 2-norm projection of the origin
in R" on the nonempty feasible region determined by (3.1). To obtain an
SOR procedure for solving (3.5) we take the dual of the quadratic
perturbation of (3.5)

2
(3.7) min __ {ey+5||x, y]|,[Ax-y<b}
(x,y)eRD™ 2 2

which turns out to be [9]

1 nal 2.1 2
(3.8) min 1A u=v||; + 5 ||utw-e]|., + cbu=: min w(u,v,w)
(u.v.w)eR:+ m Z 2°2 2 (u.v.v::)el!T""""'|

with (x,y) related to (u,v,w) by

(3.9) x-%(-ATu'&v). y-IE(qu-e)

Since

(3.10) v(u,v,w) = A(ATu-v)+u+u-e+eb , Vzw(u,v,w)- AAT+I -A 1
-(ATu-v) -AT I o

Uutwe-e 1 0 1
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it follows that vy(0,e, Ae) > 0 for sufficiently large A and consequently
the iterates of the SOR algorithm of [10, Algorithm 3.2, Remark 3.2] applied
to 3.8 will have an accumulation for all positive values of e. In particular

we have the following algorithm and convergence theorem.

3.1 LISOR(A, b) Algorithm Choose (u,v,w®) ¢RT"™™, we(0,2) and e >0,

i,wi) determine (u“’l,v“twi+1

Having (ui,v ) as follows:

e e,
wiﬂ = (wi - w(uiﬂ +wi -e))

+

3.2 LISOR{A, b) Convergence Theorem For each ¢ > 0 the iterates (ui,v',wi)

of the LISOR(A, b) algorithm are bounded and have an accumulation point

(ule), v(e), w(e)). For all ee (0,] for some & > 0, the point (x,y)
(3.11) X:= IE(-ATu(e) +v(e)), y:= 1E(u(e) +w(e) -e)

is independent of € and is the unique solution of (3.5) with least 2-norm,

and x 1is the unigue solution (3.6) with least ||x, (Ax-b)+||2 .

i,wi) have an accumulation point which solves

Proof That the iterates (ul,v
(3.8) for al1 ¢ > 0 follows from Theorem 2.2 of [10]. That for ee (0,c]
for some & > 0, (X,y) defined by (3.11) is the unique solution of (3.5)
with least 2-norm follows from the duality equivalence of (3.7) and (3.8)

and from Theorem 2.1. Since problems (3.5) and (3.6) are equivalent and
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¥ = (Ax-b), for a solution of (3.5), it follows that X {s the unique
solution of (3.6) with least value of |[|x, (Ax-b)|I,. 0

We note here Eremin's algorithm [5] which is one of the few iterative

algorithms capable of handling inconsistent inequalities. Eremin gives no

computational experience and the presence in his algorithm of a positive

[ )
stepsize )‘i satisfying Ai + 0 and Z Ai = o may cause slow convergence.
j=1

An interesting application of the above method is to the problem of

image reconstruction techniques [7,8] where the fundamental problem is to

solve the system

(3.12) Bxxd x>0

where typicaily the mxn matrix B may be of order 28000 x 6000 with less

4 L ol s

than 1% of nonzero elements [8]. Iterative methods are well suited for such
large sparse problems. Unfortunately such methods often require assumptions
that are rarely verifiable. Typically such methods assume a priori that
the system (3.12) has a solution [7,8]. In contrast our proposed LISOR
method requires no assumptions whatsoever when applied to the equivalent

problem

(3.13) Bx £d, -Bx < -d, x>0

B d
In particular LISOR (( ), ( )) will lead to the unique solution X
-8 -d

of minn IBx - dfl; with least ([[x, Bx - dff,.

‘ XeR+
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E 4. Normal solutions of possibly unsolvable linear programs

We consider here again the linear program (2.1) but make no assump-

tions whatsoever regarding its feasibility or solvability. The idea here

is to apply the LISOR Algorithm 3.1 to the equivalent linear complemen-
tarity problem for (2.1) [4]

(4.1) Mz+q20,q2<0,220

where

- 0 A -
(4.2) z-(x)en"”",h( ') q= (c)
u ~A 0 b

and u 1is the dual variable. Direct application of the convergence

Theorem 3.2 to the LISOR((':) , (q)) algorithm gives that the iterates

i of LISOR ((':), (g)) are bounded for all € > 0 and that for all

; ce (0,e] for some € > 0 they lead to a Zz which is independent of ¢ %

and such that Z 1is the unique solution of

(4.3) min I (-Mz-a, q2),]I;

n
zER+

with least |z, (-Mz-q, qz)+[|2. Hence Z = (a), is an exact solution
of the primal-dual pair with least 2-norm if the linear program (2.1) is

solvable. Else, it is the unique solution of (4.3) with least 2-norm for

"

the vector in RZ("+m composed of the primal-dual variable 2, the

primal-dual infeasibility (-Mz- q)+, and the primal-dual objective
| : function inequality (qz),.
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5. Computational results
Computational experiments have been carried so far on the LPSOR

Algorithm 2.3 only. Results on medium-sized problems were given in [11].

We give below new computational results for randomly generated large sparse
problems carried on the VAX 11/780 with double accuracy floating point addi-
tion time of 4.6 us and multiplication time of 6.0 us. Comparisons were made
with Marston's XMP revised simplex linear programing code [14]. The results
1 shown in Table 1 are all for a matrix A with essentfally a “tridiagonal®
structure and fully dense last column and row. The XNP accuracy was to

within 12-figure accuracy of the current objective function when it managed

to obtain a solution. The accuracy of the LPSOR was measured by the =-norwm
of the primal infeasibility of the numerical solution and the relative
! ' deviation of the computed maximum value from the true maximum. The tadble
‘ indicates that for the accuracy obu.inod. the LPSOR method becomes competi-
jv tive with the simplex method as the problem size gets larger and that for
§ | very large problems, SOR methods may be the only viable methods of solution.
Table 1

Comparison of the Revised Simplex Code XMP _and LPSOR for Solving 2.1
m = no. of inequality constraints, n = no. of nonnegative variables

XMP LPSOR
m n Iteration No. Hr:Min:Sec Iteration No. Hr:Min:Sec Relative Accur.
100 200 123 0:00: 11 180 0:00:17 1076
500 1,000 746 0:03:12 $20 0:05:11 1077
y 1,000 1,000 2,309 0:42:02 1,640 0:26:12 1074
2,500 10,000 Could not solved) 480 0:37:25 1074
5,000 20,000 _ Could not solveb) 660 1:17:53 107!
a)program was killed after more than 3 hours of CPU time.
i b)Program used virtual memory space much larger than physical mewory, so it ren
. inefficiently and had to be killed within 10 minutes of CPU time which
corresponded to over 8 hours of real elapsed time.

~. (R - U
R R
SR AR - 20N 3
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